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Abstract In this paper, the deterministic pilot allocation problem in orthogonal frequency division multiplexing
(OFDM) systems based on mutual coherence minimization of the measurement matrix is addressed using compressed
sensing (CS). Pilot symbols are necessary for channel estimation and an improper allocation directly degrades the chan-
nel estimation accuracy and significantly impair the performance of the overall system. CS requires that the mutual
coherence between the sensing matrix X and the sparsifying basis D (i.e., Discrete Fourier Transform (DFT) submatrix)
is small for an optimal pilot pattern allocation. It is known that if the set of pilot pattern is a Cyclic Difference Set
(CDS), the mutual coherence of the measurement matrix is minimized. However, CDS in most practical OFDM system is
not available. Therefore, a new criterion and an improved DFT-matrix based pilot allocation scheme are proposed that
jointly optimized for the allocation of pilots as a solution. CS reconstruction algorithms such as the Orthogonal matching
pursuit (OMP), the Regularized OMP (ROMP) and the Subspace Pursuit (SP) are applied in order to recover the sparse
channel. Simulation results show that the proposed pilot allocation scheme and criterion offer a better channel estimation
performance in terms of BER.
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1. Introduction

Orthogonal frequency division multiplexing (OFDM) technique has been widely used in the wireless communication
system as a result of its high data rate transmission and robustness against the multipath fading channel. The OFDM
system technique converts a frequency-selective fading wireless channel into a number of flat-fading narrowband sub-
carriers [1],[2]. In order to achieve an accurate Channel State Information (CSI) performance, the majority of the wireless
communication systems receivers adopt the coherent detection of signals [3]. This is achieved through proper allocation
of the pilot symbols [4]. However, in a coherent digital wireless communication system, acquiring accurate estimates of
the CSI is critical at the receiver [4]. Studies have shown that the equidistant pilot allocation in the traditional Channel
Estimation (CE) approach minimizes the MSE performance but, unfortunately, this does not hold for sparse channels [5].

Recently, channel measurements have shown that the wireless channel exhibits a sparse nature which is due to the
sparse structure of scatters in space [6]. Therefore, unlike the traditional CE approach, considering the inherent sparsity
of the signal allows for an accurate signal recovery from far fewer measurements to achieve the same MSE performance
[7] [4]. Hence, pilot allocation design scheme has become a major focus for sparse CE in OFDM system. According to
the Restricted Isometry Property (RIP), high probability of sparse recovery guarantees is now possible and considered as
statistically optimal if the observation signal measurement uses matrices that are generated at random. But, there is no
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Figure 1. Top: the real part of time-domain signal with 16 measurements or samples. Bottom: 5-sparse vector
of Fourier coefficients of length 50

known method to test in polynomial time if a given measurement matrix satisfies RIP [8]. Furthermore, provided with a
partial discrete Fourier transform (DFT) measurement matrix, it is known that if the pilot indices set is a cyclic difference
set (CDS), the mutual coherence of the measurement matrix is minimized [9][10]. However, it is not guaranteed that a
CDS will exist for every pilot size. Alternatively, since the CDS do not exist and it is usual to replace the RIP condition
with the mutual coherence measure [4]. Therefore, in this paper, a new criterion that reduces the larger summation of
columns correlation of the DFT-submatrix is proposed. Also, a pilot pattern optimization algorithm namely a forward-
backward search algorithm is presented for a deterministic pilot allocation design solution.

The remaining part of this paper is organized as follows. The CIR and the OFDM system is presented in Section 2.
In Section 3, the proposed criterion and Pilot pattern forward Search allocation algorithm is presented. In Section 4, the
simulation results is presented. Chapter 5 concludes the paper.

2 CIR and the OFDM system model

In this section, the CIR model is presented and provides a mathematical framework for the sparsity of high dimensional
signals. The OFDM system model is also presented.

2.1 CIR Model

In wireless communication system, the notion of a rich multipath channel structure is normally assumed for the conven-
tional channel estimation method [7] . For high-speed wireless communication system, the CIR is considered to be sparse
and consist of a significant number of nonzero dominant channel taps in the entire CIR length. Such channels, an example
of which is shown in Fig. 1, typically demonstrates the strength of CS and it presents an illustration of a signal of length
L = 50, with sparsity k = 5 in the Fourier transform domain. The channel is composed of a few dominant taps (i.e., 5
taps) and a large part of taps is approximately zero or zero. This phenomenon, however, is encountered in many physical
applications that are of high speed. Consider a frequency-selective multipath fading channel whose CIR is given by

h(n) =

L−1∑
l=0

hlδ(n− τl), (1)
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where h = [h0, h1, . . . , hL − 1]T is the sparse CIR that must be estimated, hl is the corresponding complex amplitude of
the lth CIR tap, while τl is the path delay.

2.2 OFDM system model

Consider an OFDM system with a comb-type pilot arrangement havingN subcarriers, of whichM subcarriers are indexed
with pilots, in positions: P = {P1, P2, . . . , PM} ⊆ {1,≤ P1 < P2 < . . . PM ≤ N} that are known at the receiver.
From Eq. (1), if the channel is considered to have an L number of sparse channel taps, and if the transmitted pilot vector
is represented as x(P1), x(P2), . . . , x(PM), then the received pilot vector can be expressed as

y(P1)

y(P2)
...

y(PM)

 =


x(P1) 0 0 0

0 x(P2) 0 0

0 0
. . . 0

0 0 0 x(PM)

 �DM×L

h(1)

h(2)
...

h(L)

+


v(1)

v(2)
...

v(M)

 , (2)

where h , [h(1), h(2), . . . , h(L)]T is the sparse CIR consisting of only a few number of non-zero channel tap of length
L, v , [v(1), v(2), ..., v(PM)]T ∼ CN (0, σ2

vIM) is the additive white Gaussian Noise (AWGN) and the partial DFT
submatrix is chosen such thatDM×L represents theM rows and the first 1, 2..., L columns of a standard Fourier transform
matrix. The DM×L sub-matrix can be expressed as

DMxL =
1√
N
�


e
−j2πP1·0

N e
−j2πP1·1

N · · · e
−j2πP1·(L−1)

N

e
−j2πP2·0

N e
−j2πP2·1

N · · · e
−j2πP2·(L−1)

N

...
...

...
...

e
−j2πPM·0

N e
−j2πPM·1

N · · · e
−j2πPM·(L−1)

N

 . (3)

If the transmitted pilot signal is denoted as X , diag{x(P1), x(P2), ..., x(PM)}, and the received signal is denoted as
y , [y(P1), y(P2), . . . , y(PM)]T then Eq. (2) can be re-expressed as

y , X DMXL h + v. (4)

If the measurement matrix XDP×L is represented by A then Eq. (4) can be presented as

y , Ah + v . (5)

The mathematical model of Eq. (5) directly corresponds to a signal measurement process that is nonadaptive and
senses a k-sparse signal h by taking m linear measurements of the signal. Hence, h is reliably recovered from the
knowledge of the observation vector signal y and the sensing matrix A. If the measurement matrix A consist of a higher
number of rows than columns (M ≥ L) then the CIR can adequately be estimated by LS channel estimation method.
However, if the channel consists of a lesser number of rows than columns (M < L) then the system is said to be
under-determined and can no longer be estimated by LS. In this case, CS algorithm can be applied in estimating h with
a high degree of accuracy. Since the number of rows (i.e., pilot signals) is far lesser than the number of columns (i.e.,
channel coefficients), the pilot signal overhead typically experiences a reduction and result in the conservation of spectral
efficiency. In this work, in order to conserve spectral efficiency, theM < L case is considered.

2.3 Sparse Channel Estimation

Considering the case ofM < L, three different questions now arise, (i) To achieve a successful recovery guarantee of the
sparse CIR h, what specific conditions must the measurement matrix A satisfy in order to guarantee an accurate recovery
of the signals? (ii) From the observation signal y and the measurement matrix A in Eq. (5), can the CIR, h in practice be
dependently solved using the list of the available Polynomial-time algorithms? and (iii) In the event that the observation
signals y is degraded by noise perturbation, what guarantee in terms of performance can be reasonably rendered?
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Solution to these questions have over the years been given by a lot of researchers mostly in the field of compressed
Sensing (CS) which stresses that the k−sparse or approximately k−sparse CIR h can efficiently be recovered from the
noisy measurement y by using both a well-designed measurement matrix A of dimensionM < L and a good non-linear
reconstruction algorithm [11]. This result rely on the fact that, the Restricted Isometry Property sees every 2k column of
the normalized measurement matrix A, behaving as an isometry. The RIP is defined as follows

Definition 1:[11] A measurement matrix A satisfies the RIP of order k if there exist a δk ∈ (0, 1) such that

(1− δk)‖h‖22 6 ‖Ah‖22 6 (1 + δk)‖h‖22 (6)

holds for all h ∈
∑
k. To put it in another way, the RIP of order 2k emphasizes that the matrix A behaves in an almost

isometry on all the k sparse vector h. For instance, if A is an identity matrix of order L, RIP is then trivially satisfied for
any k = 1, 2, ..., L having δk = 0. Hence, A verifiable satisfies these properties but with a combinatorial computational
complexity of submatrices that must essentially be considered in guaranteeing recovery. Therefore, other related measures
on the matrix A, such as mutual coherence, are often used and its defined as follows

Definition 2:[4] The coherence of the measurement matrix A is defined as the largest absolute inner product corre-
lation between any two separate columns of A and is presented as

µ(A) = max
0≤m<n≤L−1

|〈A(m),A(n)〉|

= max
0≤m<n≤L−1

|(AHA)mn|

= max
0≤m<n≤L−1

∣∣∣∣ M∑
i=1

X(Pi)e
−j2π(−Pim)/NX(Pi)e

−j2πPin/N
∣∣∣∣

= max
0≤m<n≤L−1

∣∣∣∣ M∑
i=1

|X(Pi)|2e−j2πPi(n−m)/N

∣∣∣∣. (7)

Tropp and Gilbert [1] have shown that, the Basis pursuit (BP) and the simple Orthogonal Matching Pursuit (OMP) algo-
rithms can accurately reconstruct the originally transmitted signal, if only the following theorem is satisfied.

Theorem 1:[1] Suppose µ is the coherence ofA, µ(A) and that h ∈
∑
k with k < (1/µ+1)/4. In addition, suppose

y measurements were obtained from the observation signal i.e. y = Ah + v , then when B(y) = {h : ‖Ah− y‖2 6 ε, the
reconstructed signal deviation of ĥ from h using BP and OMP is bounded by

‖ĥ− h‖2 6
ε2√

1− µ(A)(2k − 1)
, (8)

where B(y) ensures that the estimate of ĥ is consistent with the observed measurements y. Since µ(A) is the only variable
property in Eq. (8), therefore means that, a measurement matrix designed in such a way that µ(A) is the least possible
will proffer a more accurate approximation of h.

In signal processing, it is known that, a complex-valued signal has a constant amplitude zero autocorrelation waveform
property with modulus one and with zero autocorrelation function. Since, OFDM system pilot pattern sequences used in
wireless communication exhibit this property, the pilot patterns in this paper will be assumed to have a constant amplitude
of one (|X(P1)| = |X(P2)| . . . |X(PM)| = 1). In this case, according to Eq. (7), for every set P , the coherence will be
computed based on just the effect of pilots across the Pi location where i ∈ 1, 2, . . .M, while the pilot amplitudes are
relaxed to a value of one based on the stated assumption. The Eq. (7) is further simplified as;

µ(A) = 1 · max
0≤m<n≤L−1

∣∣∣∣ M∑
i=1

e−j2πKi(n−m)/N

∣∣∣∣. (9)
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If Λ(P) = µ(A), the objective function is to select the pilot pattern that has the minimum argument of the mutual
coherence measure, this is presented as

Popt = argmin
P

Λ(P). (10)

2.4 Mutual Coherence Analysis

In Eq. (9), the coherence of the measurement matrix µ(A) only relies on q = n −m (i.e., the pilot location). Therefore,
Eq. (9) can further be re-expressed as

µ(A) = 1 · max
0≤q≤L−1

∣∣∣∣ M∑
i=1

e−j2πKiq/N
∣∣∣∣ (11)

Consequently, the optimal pilot pattern solution is thus derived as;

Popt = argmin
P

max
0≤q≤L−1

∣∣∣∣ M∑
i=1

e−j2πPiq/N
∣∣∣∣

= argmin
P

max
0≤q≤L−1

∥∥∥∥ M∑
i=1

e−j2πPiq/N
∥∥∥∥2

= argmin
P

max
0≤q≤L−1

( M∑
i=1

e−j2πPiq/N
)( P∑

i=1

e−j2πPiq/N
)H

= argmin
P

max
0≤q≤L−1

( M∑
i=1

e−j2πPiq/N
)(

1

/ P∑
i=1

e−j2πPiq/N
)

= argmin
P

max
0≤q≤L−1

( M∑
i=1

e−j2πPiq/N
)( P∑

i=1

ej2πPiq/N
)

= argmin
P

max
0≤q≤L−1

M∑
m=1

M∑
n=1

e−j2πq(Pm−Pn)/N . (12)

Let CP represents the cyclic difference set of P , such that

CP = {(Pn − Pm) mod N |1 ≤ m 6= n ≤ P}. (13)

For an element, say d contained in CP , if ad represents the number of repetition in CP , then Eq. (12) can therefore be
re-expressed as

argmin
P

max
0≤q≤L−1

M∑
m=1

M∑
n=1

e−j2πq(Pm−Pn)/N =M+

N−1∑
d=1

ade
−j2πqd/N . (14)

To obtain the Fourier series coefficient sequence of ad, the complex orthogonal sequence set is exploited. This is achieved
by multiplying through by e−j2πqn/N and summing from n = 0 to n = N − 1. This, therefore, gives

N−1∑
q=1

(
M+

N−1∑
d=1

ade
−j2πqd/N

)
=M(N − 1)−

N−1∑
d=1

ad =M(N − P). (15)

The maximum value of the R.H.S of Eq. (14) within the range of n = 0 to n = N − 1 , can therefore be expressed as

max
0≤q≤N−1

(
M(N − 1)−

N−1∑
d=1

ad

)
≥M(N −M)/(N − 1). (16)
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Hence, this is valid only for an index set of pilot pattern P where a1 = a2 = ... = aN−1 = (
∑N−1
d=1 ad)/(N −

1) = M(M− 1)/(N − 1) = λ occurs. Choices for which the measurement matrix coherence is minimized is thus
present. For instance, a CDS {1, 6, 7, 9, 19, 38, 42, 49} represented as CDS (57, 8) where N = 57 andM = 8, satisfies
the integer F (1 ≤ F ≤ N − 1) i.e F (1 ≤ F ≤ 56) and occurs exactly (λ = M(M − 1)/(N − 1) = 8(8 −
1)/(57 − 1) = 1) 1 times in the set Ψ , {((am − an))57|0 ≤ m 6= n ≤ 7} to which Ψ has 56 entries. Also, a CDS
{0, 1, 3, 5, 9, 15, 22, 25, 26, 27, 34, 35, 38} represented as CDS (40,13) where N = 40 andM = 13, which satisfies the
integer F (1 ≤ F ≤ N − 1) occurs exactly 4 times in the set Ψ , {((am − an))40|0 ≤ m 6= n ≤ 12} to which Ψ has
156 entries.

Pilot pattern selection in relation to CDS (N,M) is optimal if the CDS exist [12]. Hence, the mutual coherence of
the partial DFT sub-matrix will be minimized. However, in practical OFDM system, the design consideration for N is
often of the order of N = 2n, where n is chosen to be 6, 8, 9, or 10 where the CDS do not exist. The mutual coherence
property would therefore be applied for a suboptimal pilot pattern design.

3. Proposed Criterion and Foward Search Pilot Allocation Scheme

In this section, a new criterion and a cost function which is based on the mutual coherence minimization of the DFT
submatrix is proposed for the deterministic pilot pattern selection in cases where the CDS does not exist. From Eq. (9),
the minimum coherence of the measurement matrix can also be represented having the mathematical exactness as

µmax(A) = max
0≤m<n≤L−1,m 6=n

|Gm,n| = max
0≤m<n≤L−1,m 6=n

|âHmân|, (17)

where (·)H is the Hermitian transpose, âm represents the mth column of A and the gram matrix represented as G . It is
known that, the average minimum coherence of the off-diagonal entry of A is given by [9]

µavg(A) =

∑
0≤m<n≤L−1,m 6=n

|âHmân|

(L− 1)[(L− 1)− 1]
. (18)

Therefore, from Eq. (17) and Eq. (18), since the value of coherence lies between 0 < µ ≤ 1, it is then obvious that

β

√√√√ ∑
0≤m<n≤L−1,m6=n

|âHmân|β

(L− 1)[(L− 1)− 1]
≤ µmax(A). (19)

Suppose that δS is the infinimum of the Restricted Isometry Constant (RIC) that satisfies the definition of the Restricted
Isometry Property (RIP). Therefore, Eq. (19) can be re-expressed as

0 ≤ δS ≤
β

√√√√ ∑
0≤m<n≤L−1,m 6=n

|âHmân|β

(L− 1)[(L− 1)− 1]
≤ µmax(A) (20)

with a cost function of β = 4 as proposed, translates to be the fourth root of the mutual coherence function and which
directly corresponds to the upper bound of the RIC constant δS . This cost function will be applied while calculating
the mutual coherence of the measurement matrix A which will be suitable in minimizing the summation of columns
correlation in the partial DFT submatrix.

Algorithm 1 describes the construction of the matrix A using an optimal pilot patten selection. The essential idea in
the proposed scheme is to generate a series of candidate pilot patterns, where each new candidate is acquired from the
previous one by taking a step in the right direction towards the global optimum. Algorithm 1 starts with the initialization
process and with a random pilot generation P = {P1, P2, . . . , PM} ⊆ {1,≤ P1 < P2 < . . . PM ≤ N} having a
cardinality of P . For each index set obtained, the partial DFT sub-Matrix is determined and the mutual coherence of
the measurement matrix is calculated. The index set derived from the minimum coherence of A is constantly updated to
form the set P̂ = {P1, P2, . . . , PM}. The process is then repeated in a backwards fashion in order to avoid the proposed
algorithm from moving away from its global objective.
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Data:M = number of pilots, N = number of subcarriers, FM×L = DFT submatrix
initialization: Q⇐=1 ;
P = {P1, P2, . . . , PM} ⊆ {1,≤ P1 < P2 < . . . PM ≤ N} / Randomly generate a pilot pattern
P̂ ⇐ P
for k=1,2,. . . ,J do

for m=1,2,. . . ,M do
for n=1,2,. . . ,N do

if Pm /∈ n then
for each index set obtain the DFT submatrix A(= FM×L)
µmax(A) = max

0≤m<n≤L−1,m 6=n
|Gm,n| / compute mutual coherence ;

if coherence < Q then
Choose substitute for Pm \ n with the minimum coherence index from the set

end
end

end
end
P̂ = {P1, P2, . . . , PM}
for p =M− 1,M− 2, . . . , 1 do

for n=1,2,. . . ,N do
if Pm /∈ n then

for each index set obtain the DFT submatrix A(= FM×L)
µmax(A) = max

0≤m<n≤L−1,m 6=n
|Gm,n| / compute mutual coherence ;

if coherence < Q then
Choose substitute for Pm \ n with the minimum coherence index from the set

end
end

end
end

end
Algorithm 1: Forward Backward Pilot Search Algorithms

4 Simulation Results

Consider a 4QAM OFDM system with N = 256 subcarriers and M = 16 pilot subcarriers used for OFDM channel
estimation. If the channel model is based on an FIR filter with L = 50, out of which k = 5 are non-zero randomly
selected channel taps with varying fading parameters, making the channel 5−sparse. Pilot allocation design numbers
according to presented methods in [4], [9] and our proposed values have been tabulated in Table 1 for comparison. As to
the problem of pilot placement, the equidistant pilot allocation is generally optimal in conventional CE such as the Least
Squares (LS) estimator which happens to be the best linear unbiased estimator. But, provides inaccurate estimates for
sparse CE which requires using randomly chosen sets of pilot signals. The LSE is thus, considered for comparison. In

Table 1. Pilot pattern design by different methods

Method Optimal Pilot Pattern

LSE 1, 18, 35, 52, 69, 86, 103, 120, 137, 154, 171, 188, 205, 222, 239, 256
[4] 8, 40, 48, 52, 72, 82, 99, 142, 145, 154, 158, 161, 183, 209, 212, 230
[9] 7, 17, 20, 29, 33, 79, 85, 137, 156, 159, 165, 174, 178, 202, 206, 239

Proposed 11, 32, 43, 61, 65, 68, 72, 82, 96, 128, 141, 172, 183, 209, 218, 227

ELEKTROPIKA, Vol. 4, 2017
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Figure 2. Magnitude in the off-diagonal elements in the measurement matrix for two different methods:
Algorithm 1 using the cost function and Algorithm 1 without the cost function

Figure 3. Channel estimation comparison showing BER performance for different optimal pilot pattern using
OMP

Fig. 2, the magnitude of the upper triangular of the off-diagonal entries of the Gramian matrix representing the column
correlation for two different scenarios of the pilot pattern of the proposed algorithm is depicted. It is observed that,
the application of the cost function to the proposed algorithm helps in the further reduction of the magnitude of column
correlation of the off- diagonal entries of the measurement matrix (i.e., making the sensing basis more incoherent with the
sparsity basis). This is important because, in the CS framework (y = Ah + v, where A = XD), the sparsfying discrete
Fourier transform basis D should be maximally incoherent with the sensing matrix X for a more accurate guarantee of

ELEKTROPIKA, Vol. 4, 2017
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Figure 4. Channel estimation comparison showing BER performance for different optimal pilot pattern using
ROMP

Figure 5. Channel estimation comparison showing BER performance for different optimal pilot pattern using
SP

the recovered signal.
Furthermore, sparse channel estimation using the Orthogonal Matching Pursuit (OMP), the Randomized OMP (ROMP)

and the Subspace Pursuit (SP) algorithms are employed to estimate the sparse channel. The LS channel estimator which
uses the equidistant pilot pattern is also employed in estimating the sparse channel. The pilot pattern obtained from the
proposed algorithm and those obtained by different optimal methods as presented in Table 1 are individually used as pilot
signals in the OFDM system to track the Channel Impulse Response (CSI) for subsequent sparse signal reconstruction.

ELEKTROPIKA, Vol. 4, 2017



10 Improved DFT-matrix based Pilot Allocation Scheme for Sparse Channel Estimation

Figure 6. BER recovery performance of the proposed algorithm using the OMP, ROMP, SP compressed
sensing estimators on the same curve

The channel estimation performance are compared showing the BER performance for different optimal pilot patterns
using the OMP, Randomized OMP (ROMP) and the Subspace Pursuit (SP) Algorithm and the results are presented in
Fig. 3, Fig. 4, and Fig. 5 respectively. It is observed that the pilot pattern optimization algorithm obtained from the pro-
posed pilot pattern with the cost function performs better than that without the cost function. Also, it is observed that
the proposed method outperforms the other optimized pilot pattern from different schemes. In Fig. 6, it is observed that
using the OMP sparse reconstruction algorithm produces a better reconstruction performance than the ROMP and SP
algorithms respectively. The reconstruction performance of the LS channel estimation using the equidistant pilot pattern
produces a poor reconstruction performance. This is because, the conventional method of channel estimation that employs
the least-squares (LS) fail to exploit the wireless channel sparsity, which results in a poor BER performance in a sparse
scenario.

5. Conclusion

Compressed Sensing (CS) is a new field of applied mathematics that tackles the drawbacks of conventional signal pro-
cessing technique, that aims at sampling a signal to efficiently acquire the signal in a compressed form and reconstructing
the signal, by finding solutions to the underdetermined linear systems. In this paper, the investigation on the possibility
of improving the sparsity-based OFDM system channel estimates was formulated as a pilot pattern allocation problem.
First, a new criterion and a fourth power summation of columns correlation were proposed to decrease the size of the
larger magnitude column correlation of the DFT sub-matrix since the mutual coherence property is the upper bound of the
infinimum restricted isometric constant in RIP. For the cases where the CDS does not exist, a forward-backwards scheme
that optimizes pilot pattern allocation was proposed. It was demonstrated that using the compressed sensing technique,
the proposed cost function and pilot pattern allocation algorithm leads to better performance in channel estimation. Re-
sults from the simulation were confirmed when the Orthogonal Matching Pursuit (OMP) algorithm and the Regularized
Orthogonal Matching Pursuit (ROMP) compressed sensing estimators were used for channel estimation.
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