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Abstract—In this paper, an intelligence controller namely Adaptive Neuro-controller (ANC) based
on Hybrid Multilayered Perceptron (HMLP) network is developed for the attitude control of a nano-
satellite. The neural network is using Model Reference Adaptive Control (MRAC) as a control
scheme. The control scheme was used to control a time varying systems where the performance
specifications are given in terms of a reference model. Weighted Recursive Least Square (WRLS)
algorithm has been used to adjust the controller parameters to minimize the error between the actual
output and the model reference output. The convergence rate of the ANC is further improved
by using WRLS as the adjustment parameter. The objective of this paper is to compare the
time response and tracking performance between artificial intelligence controller and conventional
Proportional-Integral-Derivative (PID) controller in orientation control system of a satellite attitude.
These controllers have been tested using a nano-satellite plant with some variations in operating
conditions such as varying gain, noise and disturbance torques. The simulation results indicated
that ANC based on HMLP network gave significant improvement over PID controller.

Keywords: Adaptive Neuro-controller, Hybrid Multilayered Perceptron, Model Reference
Adaptive Control, Weighted Recursive Least Square, Proportional-Integral-Derivative

1. INTRODUCTION

Generally, most of the smallest satellites are less expensive to develop and build than the dedicated
missions required by conventional satellites. Development of conventional satellite needs capital and
expertise intensive and requiring multi-year development. Thus, severely limiting participation by
science and engineering students. The reasonably low cost of space research projects and engineering
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development of satellites less than 10 kg has attracted some 80 educational institutions around the
world to this field [1, 2].

The attitude control system (ACS) is the main sub-system in satellite development. The
requirements of ACS are decided by the payload of the satellite as given in [3, 4]. The usual ACS
used in small or large satellites includes several kinds of sensors, actuators and an onboard computer.
On board computer processes the data through a control algorithm which is specially designed for
the particular mission [5]. In order to allow precise pointing of an antenna toward the Earth and
to allow direct solar panels toward the Sun, a satellite must maintain a certain attitude while in
orbit. The satellite receives interference from phenomena such as the Earth’s gravitation, airflow,
magnetic fields, and the solar wind. This makes it necessary to control attitude to maintain the
satellite’s stability [6]. There are three basic types of satellite control systems. The first one is a
spin control where the entire satellite is spun. The next one is a dual-spin control where the major
portion spun while only the payload despun. Finally, the last basic type of satellite control system
is a three-axis active control where the major part of satellite despun [7].

One of the most important issues in satellite control design is the attitude stabilization and
control, which is the combination of mathematics, dynamics, and control theories. Intelligent
controllers could be utilized for this problem. Intelligent controllers do not base on models, where-
as traditional controllers are based on the precondition that the whole dynamics can be accurately
modelled. As a result, numerous intelligent controllers such as adaptive neuro- controller have been
proposed to replace the traditional ones [8]. Developing intelligent controller for satellites attitude
control aims at dealing with the large variation of system parameters and relevant uncertainties
in the environment [9]. The ability to adapt to variations in plant dynamics and environment
automatically has made such adaptive controllers increasingly important for various applications.

Neural networks have been proven to be capable of approximating any real continuous functions
on a compact set to arbitrary accuracy. It is very powerful techniques in the discipline of systems
control, especially when the controlled systems have large uncertainties and strong non- linearities.
Therefore, neural network have been extensively employed in the attitude control [10]. The
advantages of neural network controllers are they can provide a ’black box’ controller which can be
re-trained for other applications. It is also can adapt to change in the uncertainty conditions; and
provide ’soft’ failure characteristics and nonlinear control laws [11].

For satellite attitude control system, a few approaches by using neural network have been
developed [12–15]. Mehrabian [16] proposed a model reference adaptive neuro-controller using
feed-forward neural networks with momentum back-propagation (MBP) learning algorithm. This
controller was utilized to control a nonlinear system. However, it needs some tuning of parameters
requiring a few trails and error to be properly selected. Rajasekaran [17] developed a structured
model-following Neuro Adaptive control. From simulation studies, this adaptive controller is found
to be very effective in executing precise large attitude maneuvers in the presence of uncertainties
and constant disturbances. However, some of the other practical issues such as sensitivity to noise,
actuator time delays, time varying disturbance torques and robustness to un-modelled dynamics
have not being addressed in the paper.

In this current study, the advantages of HMLP network and the WRLS algorithm are combined
to improve the performance of time response and tracking control technique in varying operating
conditions such as noise, varying gain and disturbance torques. The performance of the ANC was
compared to conventional PID controller.

2. MODEL OF SATELLITE

Developing a mathematical model of the plant which adequately represents the real environment is
very important and not an easy task. If the model is not accurate enough, the subsequent steps of
analysis, prediction, control, synthesis and so on, cannot successful be carried out. Model should
provide information at the most relevant level of precision and, suppressing unnecessary details
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when appropriate. The model is neither too simple as it might gives an improper representation for
the characteristics of the system nor too complex as it will be difficult to implement in real practical
situation [18].

In this paper, the mathematical model of the plant is an Innovative Satellite (InnoSAT).
InnoSAT is based on the basic unit known as CubeSat. A CubeSat is a type of miniaturized
satellite for space research that usually has the size of 10cm x 10cm x 10cm, volume of exactly
1 liter, weighs no more than 1 kilogram, and typically uses commercial, off-the-shelf electronics
components. Beginning in 1999, California Polytechnic State University and Stanford University
developed the CubeSat specifications to help universities worldwide to perform space science and
exploration [19]. InnoSAT is a nano class satellite and consists of three CubeSats stacked together,
which carries a few payloads designed by a few Malaysian Universities. InnoSAT education package
consists of the CubeSAT kit structure measuring 30cm x 10cm x 10cm.

For InnoSAT model, there are a double integrator for Roll (X), Pitch (Y) and Yaw (Z) axes
which having two poles at the origin of s-plane. This model is considered to present the tumbling
behaviour of a satellite in space after deployment and used to study the performance aspects of
satellite behaviour under various operating conditions. Since this model is dealing with second-
order systems, some damping control must also be provided to improve stability. This means that
the control torques will have to include a term that is dependent on the attitude rates to be measured
or estimated.

The control torques to be activated is always a function of the attitude errors. The simplest
torque control law is based on Euler angle errors. For a satellite with a diagonal inertia matrix and
small Euler angle rotations, the attitude dynamic equations can be approximated as [3]

Tdx + Tcx = Ixϕ̈

Tdy + Tcy = Iy θ̈

Tdz + Tcz = Izψ̈ (1)

These are second order linear differential equations of the Eulers angles. The Euler angles ϕ, θ and ψ
are defined as the rotational angles about the satellite body axes: ϕ, about the X axis; θ, about the
Y axis; and ψ, about the Z axis. T

′
cs, are control moments to be used for controlling the attitude

motion of the satellite; and T
′
ds, are those moments due to different disturbing environmental

phenomena. Ix,Iy and Iz are the moments of inertia for satellite body. From Eq.(1) it easily follows
that

ϕ̈ =
Tdx
Ix

+
Tcx
Ix

θ̈ =
Tdy
Iy

+
Tcy
Iy

ψ̈ =
Tdz
Iz

+
Tcz
Iz

(2)

By Laplace-transforming the Eq.(2), the characteristic equation for the motion about the Roll, Pitch
and Yaw axes are become

s2ϕ(s) − sϕ(0) − ϕ̇(0) =
Tdx
Ix

+
Tcx
Ix

s2θ(s) − sθ(0) − θ̇(0) =
Tdy
Iy

+
Tcy
Iy

s2ψ(s) − sψ(0) − ψ̇(0) =
Tdz
Iz

+
Tcz
Iz

(3)
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The Euler angles and their derivatives with subscript 0 represent the initial conditions of the satellite
attitude about its equilibrium position. For InnoSAT, the initial angles for all axes (ϕ(0), θ(0), ψ(0))
are assumed to be zero. Consequently, the transfer function of InnoSAT model for Roll, Pitch and
Yaw axes equation are simplified as Eq.(4)

ϕ(s) =

[
Tdx
Ix

+
Tcx
Ix

+ ϕ̇(0)

]
/s2

θ(s) =

[
Tdy
Iy

+
Tcy
Iy

+ θ̇(0)

]
/s2

ψ(s) =

[
Tdz
Iz

+
Tcz
Iz

+ ψ̇(0)

]
/s2 (4)

3. DESIGN SCHEME OF ADAPTIVE NEURO CONTROLLER

3.1. Model Reference Adaptive Control

In model reference adaptive control (MRAC), a reference model is chosen to generate the desired
output trajectory, and the main task of MRAC is to ensure the output of the controlled system to
follow the output of the reference model, in addition to closed-loop stability. Adaptive laws are used
to update the controller parameters to achieve desired system performance in the sense of closed-
loop stability and output tracking of a desired reference output [20, 21]. Unlike the conventional
adaptive control schemes, the control scheme in Figure 1 does not estimate the plant parameters
but directly estimate the controller parameters [22].

Figure 1: Block diagram of a model reference adaptive control scheme (MRAC)

The MRAC objective is met if u(t) is chosen so that the close loop transfer function from r(t)
to yp(t) have stable poles and is equal to ym(t), the transfer function of the reference model. A
stable linear continuous-time reference model is specified by the following differential equation [22]

ym(t) = am1ym(t− 1)− am2ym(t− 2) + bm0r(t− 1) + bm1r(t− 2) (5)

where r(t) is bounded reference input and ym(t) is reference model output; am and bm are fixed
model parameters and their values are chosen for any desired stable response, which the process
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system is expected to acquire. Thus, the MRAC desired to design a controller that computes a
control action signal, such that the overall control system responds dynamically as the specified
reference model. The model following error is defined by

e(t) = ym(t)− yp(t) (6)

where yp(t) is the actual output plant.

3.2. Hybrid Multi Layered Perceptron (HMLP) Network

Artificial neural networks (ANN) model was inspired from the morphology of biological neural
system and organization of brain structures; attempt to emulate human-like performance. Among
the many ANN models, the multilayer perceptron (MLP) is the most widely used. The MLP
network is a variant of multilayer feedforward neural network. It can be trained to form arbitrary
decision surfaces in the input space. However, the training process of multilayer perceptron takes a
large computation time and often leads to local minima problem [11,23].

To solve this problem, MLP network with linear connection, called the Hybrid Multilayer
Perceptron (HMLP) network was introduced which was proved to have better performance than
the conventional MLP network [24]. It has been selected as the basis for the ANC in the current
study. The network allows the network inputs to be connected directly to the output nodes via
some weighted connections to form a linear model in parallel with the nonlinear original MLP model.
These additional linear input connections do not significantly increase the complexity of the MLP
network since the connections are linear. It has been proved that HLMP network only requires very
small number of neurons to perform the control action. Simple RLS algorithm was used to train the
network since the parameters of the network are appear linearly within the network model. Thus,
the HMLP network with a simple RLS algorithm can be selected to be implemented as an Adaptive
Neuro-controller.

A HMLP network with one hidden layer is shown in Figure 2. It can be expressed by the
following equation

ŷk(t) =

nh∑
j=1

w2
jkF

(
ni∑
i=1

w1
ijv

0
i (t) + b1j

)
+

ni∑
i=0

wl
ikv

0
i (t) (7)

for 1 ≤ k ≤ m, where w1
ij ,w

2
jk and wl

ik denote the weights in the first layer, weights in the second

layer and weights of extra linear connections between the input and output layer, respectively; b1j
and v0i denote to the thresholds in the hidden nodes and inputs that are supplied to the input layer
respectively. The number of output node, inputs nodes and hidden nodes are represented by m,ni
and nh respectively. F (·) is an activation function that is normally selected as a sigmoid function

F (v(t)) =
1

1 + e−v(t)
(8)

The weight w1
ij ,w

2
jk and wl

ik and threshold, b1j are unknowns and should be selected to minimize the
prediction error, define as

εk = yk(t)− ŷk(t) (9)

where yk(t) is the desire output and ŷk(t) is the actual output.

3.3. Estimation Algorithm

The least square algorithm is one of the most used parameter estimator. Basically, the algorithm
minimizes the cost function of the controlled output. The corrective adjustments are designed to
make the output signal approach to the desired response. The recursive least squares algorithms,
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Figure 2: Hybrid Multi Layered Perceptron Network

when applied to parameters or state estimation, presents two advantages: avoids matrix inversion in
the presence of uncorrelated measurement errors; and needs smaller matrices sizes, which means less
need of memory storage [25]. In order to deal with parameter varying plant, a weighted recursive
least square (WRLS) will be used. Some modifications are required for WRLS algorithm to able to
estimate the controller parameters instead of the conventional estimation of plant parameters.

For all t ≥ t0, given Θ̂(t0) and set P (t) = α[I], the WRLS estimate Θ̂(t) using the following
recursive equations [22]

Θ̂(t) = Θ̂(t− 1) +K(t)
[
y(t)− φ⊤(t)Θ̂(t− 1)

]
(10)

K(t) = P (t− 1)φ(t)
[
λ(t)I+ φ⊤P (t− 1)φ(t)

]−1
(11)

P (t) =
[
I−K(t)φ⊤(t)

]
P (t− 1)/λ(t) (12)

Equation (10) need to be modified to become

Θ̂(t) = Θ̂(t− 1) +K(t)e(t− 1) (13)

where e is the difference between plant output and reference input. φ(t) is the information vector

that consists of the controller inputs and Θ̂(t) is the vector of controller parameters. Other symbols
are defined and assigned according to the standard WRLS algorithm as in [26]. Another modification
that is required to speed up the learning process is by resetting the covariant matrix P (t) and
forgetting factor λ(t), if the model following error becomes significantly large. The resetting is
based on the following equation

P (t) = 10[I]

λ(t) = 0.95 (14)



42 S.M. Sharun et.al.

4. PID CONTROLLER

PID controller is the most widely used conventional controllers. The acronyms of PID stand for
proportional-integral-derivative control. The gains of proportional, integral and derivative control
have to be tuned and fixed throughout the control simulation. Generally, proportional control is
used to reduce the rise time, integral control is used to reduce the steady state error and derivative
control is to improve the transient response. PID can work well for first and second order system but
for system with long time delays, large uncertainties and harmonic disturbances a more sophisticated
control is needed [27].

Figure 3: Block Diagram of PID Controller

A discrete PID controller is shown in Figure 3 [28], where it is defined by relationship between
the error signal e(t) and the control output signal, u(t). The error signal is used to generate the
proportional, integral, and derivative actions, with the resulting signals weighted and summed to
form the control output signal. The output of the PID controller in terms of gain can be written
as [3]

u(t) = Kp ∗ err(t) +Kd ∗Derr(t) +Ki ∗ Terr(t) (15)

Kp = proportional gain; Ki = integral gain; Kd = derivative gain
The error signal err(t) represents the difference of actual orientation angle y(t) and the reference

model r(t). The proportional control multiplies the error err(t) by a gain Kp, the derivative control
multiplies the different of error Derr(t) by a gain Kd to reduce the overshoot and the rise time, and
the integral control multiplies the total of error Terr(t) by a gain Ki to correct the steady state
error.

5. RESULTS AND DISCUSSION

In this section, simulation results of InnoSAT plant are presented. The simulation results were
produced for the controllers using some operating conditions such as varying gain, noise and
disturbance. The performances of the controllers will be evaluated based on time response
and tracking performance in response to the model reference output. The effectiveness of the
proposed ANC based on HMLP network is compared to conventional PID controller. The InnoSAT
characteristics and initial conditions are shown in Table 1.
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Table 1: InnoSAT Characteristics and Initial Conditions

The transfer function for Roll, Pitch and Yaw axes after substituting the parameter value of
InnoSAT are become

ϕ(s) =
30.58Tdx + 30.58Tcx + 5

s2
(16)

θ(s) =
20.08Tdy + 20.08Tcy + 5

s2
(17)

ψ(s) =
30.21Tdz + 30.21Tcz + 5

s2
(18)

For this comparison, the InnoSAT plants can be described by a difference equation of the discrete
form

x(t) = 2 ∗ x(t− 1)− x(t− 2) +Kp(t) ∗ 15.29 ∗ (usx(t− 1) + usx(t− 2))

+ 15.29 ∗ (udx(t− 1) + udx(t− 2)) (19)

y(t) = 2 ∗ y(t− 1)− y(t− 2) +Kp(t) ∗ 10.04 ∗ (usy(t− 1) + usy(t− 2))

+ 10.04 ∗ (udy(t− 1) + udy(t− 2)) (20)

z(t) = 2 ∗ x(t− 1)− x(t− 2) +Kp(t) ∗ 15.1 ∗ (usz(t− 1) + usz(t− 2))

+ 15.1 ∗ (udz(t− 1) + udz(t− 2)) (21)

where Kp(t) is a varying gain, u′ss(t) are the controller output and u′ds(t) are the constant
disturbance torque. Meanwhile x(t),y(t) and z(t) are the outputs from InnoSAT plant for Roll,
Pitch and Yaw axes. The input reference for this simulation is a square wave and step input. Model
reference was selected as

ym(t) = ym(t− 1)− 0.15ym(t− 2) + 0.15r(t− 1) (22)

where r(t) is a square wave reference input signal. Parameter am1 = 1, am2 = −0.15 and bm = 0.15
have been chosen such that a desired trajectory ym(t) is obtained for the plant output yp(t) to
follow. The cost functions for model following was set to

em(t) = 0.7e(t) + 0.2∆e(t) (23)

where e(t) is the proportional error and ∆e(t) is the differential error.
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The time response of the system with ANC and PID controllers are shown in Figure 4. The
gains for the PID controller were tuned to the best performance for fixed plant parameters, which
are Kp = 0.095, Kd = 0.07 and Ki = 0.009. Figure 4 shows that at early stage ANC produced faster
response compare to PID controller for Roll and Pitch axis, even though the PID controller already
have the best tuning gains. The figure also shows that overshoot of PID controller is higher than
ANC controller especially for Y axis with overshoot more than 25%. In terms of settling time, the
output response of ANC controller is slightly better than PID controller. The numerical analysis
for time response of ANC and PID controller can be referred to Table 2 - Table 4.

Figure 4: Step response of ANC and PID controllers for unity gain
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Figure 5: Comparison results with unity gain for (a) Roll, (b) Pitch and (c) Yaw axis
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Based on Figure 5(a), (b) and (c), the simulation results show that ANC significantly provides
faster response time with reduced overshoot while the PID controller continuously has the same
pattern of overshoot for all cycle. This can be proved by model following error figure showed at each
axis. The performances comparison system between the ANC and PID controllers were computed
and compared in Table 2 to Table 4. It can be observed that the performances of ANC for all axes
are better than the PID controller in terms of percentage of overshoot and rise time. In terms of
settling time, PID controller shows good performance compare to ANC but only at the first cycle
for Roll and Yaw axes. On the other hand, output response of PID has a long settling time and
percentage of overshoot is more than 25% for Pitch axis. For ANC controller, overshoot at the first
cycle is quite bad during the initial learning but it can reduce the overshoot until 0% especially for
Roll and Yaw axis. It shows that the controller can adapt with the dynamic of the system.

Table 2: Performance comparison between ANC and PID controllers for Roll Axis

Table 3: Performance comparison between ANC and PID controllers for Pitch Axis

Table 4: Performance comparison between ANC and PID controllers for Yaw Axis

The simulation results for operating conditions such as varying gain, noise and disturbance are
shown in Figure 6, 8 and 10. As illustrate in Figure 7, the output response for all axes of ANC and
PID controller asymptotically follows the desired response at the high gain. However, the output
response of ANC degrades with small oscillations at the low gain while output response for PID
controller is even worst.
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Figure 6: Varying gain

Figure 7: Comparison results with varying gain for (a) Roll, (b) Pitch and (c) Yaw axis
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Figure 8: Additive noise at the plant output

Figure 9: Comparison results with measurement noise for (a) Roll, (b) Pitch and (c) Yaw axis
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Figure 9(a), (b) and (c) shows the system is subjected to measurement noise known as Gaussian
white noise sequence with zero mean and variance 0.00013. For these figures, it is rather difficult to
distinguish the performance between the ANC and PID controllers. This is because the plots show
that the PID controller can produce result as good as the ANC controller. For Pitch axis, output
response of ANC is slightly better than PID controller but the response for the Roll and Yaw axes
are degraded. Based on the model following error figure, the error cannot be eliminated from the
system but the average of error is about 0. It also can be observed that the simulation results for
ANC and PID controllers are capable to follow the output of reference model and remain stable
under measurement noise.

Figure 10: Step disturbance of 0.05 between 300 s to 600 s

Figure 11: Output response of ANC and PID controllers with step disturbance
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From the simulation result in Figure 11, it can be said that the ANC can improve the efficiency
of attitude stabilization better than the classical controller, PID. When step disturbance with
strength 0.05 is added to the system at 300s and 600s, the percentage of overshoot for PID controller
is higher than ANC controller. The figure also shows that the output response for both controllers
settle to a steady state rapidly when the satellite encounters disturbances. Overall, the controlled
output for both controllers still follow the model reference output after certain time. It points out
that performance of ANC is significantly better than PID controllers for all axes when dealing with
disturbance.

6. CONCLUSIONS

An adaptive neuro-controller based on model reference adaptive control for the dynamical plants
has been presented. The controller structure is a direct type and can employ the feedforward neural
network such as hybrid multi layered perceptron network to compensate adaptively the parameter
varying in the plant, disturbance torque and varying operating conditions. The MRAC’s scheme
has special characteristic of not requiring explicit identification of the process or plant parameters
makes the scheme robust to the sudden plant parameter changes. Its performance was compared to
a conventional PID controller to control InnoSAT attitude. The comparison is based on the time
response performance and the capability of the controllers to track the model reference output. The
results show that ANC provides significantly faster response time with reduced overshoot and its
performance getting better with more simulation times while PID controller continuously has the
same pattern of response. However, the output response of ANC controller is slightly degraded
at certain condition (noise) for Roll and Yaw axes compared to PID controller. Based on the
simulation results and performance analysis for both controllers, it can be signify that the ANC
based on HMLP network is sufficient to control the plants with unpredictable conditions. It is also
observed that ANC based on HMLP network is controllable and more stable than PID controller.
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